Why a Scientist’s Big Break May Be Just Around the Corner
Skip to content
Careers Nov 2, 2016

Why a Scientist’s Big Break May Be Just Around the Corner

Researchers, have hope: your most successful paper can occur at any point in your career.

Successful scientists hope their next paper will be a hit.

Lisa Röper

Based on the research of

Roberta Sinatra

Dashun Wang

Pierre Deville

Chaoming Song

Albert-László Barabási

Conventional wisdom holds that a scientist’s best work is usually published mid-career, in the sweet spot after they have learned the ropes, but before administrative duties or thoughts of retirement encroach upon research. So is an aging academic with an underwhelming research career a lost cause?

That was a motivating question behind a recent study by Kellogg’s Dashun Wang. “Sometimes when I give talks, I say this is ‘the hope project,’” says Wang, an associate professor of management and organizations. It is hopeful because Wang and colleagues find that a scientist’s most-cited paper is equally likely to pop up at any point in her career.

“It may occur in your first work, or it may be the last work that you publish,” Wang says. “This was a very surprising finding.”

There is more than just researcher ego at stake. The success of scientific research has major implications for both individual scientists and the universities that employ them, since weighty matters of tenure and research funding depend on a scientists’ ability to make a splash in their field.

Discovering Random Impact

The paper—coauthored with Roberta Sinatra of Central European University, Pierre Deville of Swan Insights, Chaoming Song of University of Miami, and Albert-László Barabási of Northeastern University—is a serious contribution to what Wang calls “the science of science.” This is a rapidly expanding field that seeks to turn the microscope back on the scientific world itself to answer fundamental questions about how research is produced.

The team used the research databases Google Scholar and Web of Science to compile a list of more than 10,000 scientists who had published for at least 20 years in the disciplines of biology, chemistry, cognitive science, ecology, economics, and neuroscience.

“Sometimes when I give talks, I say this is ‘the hope project.’”

Success in the world of academic publishing is often equated with how often a paper is cited by other academics. So the researchers pinpointed the most-cited paper for each scientist and looked carefully at the papers preceding and following that big hit.

That is where they noticed something surprising: A typical scientist’s publications did not tend to ramp up in citation counts leading to the big hit—nor did papers published after the big hit receive a citation boost. In the aggregate, the trend line for citations before and after the most-cited paper lied completely flat.

So flat, in fact, that Wang’s team wanted to know if there was any pattern at all. Was the timing of success entirely random?

“We said, ‘OK, within a career, what if we just shuffle all the work you published—as if we’re oblivious to which one gets published first and which one gets published second?’” Wang says. They ran a simulation that randomized the order in which each scientist produced their papers.

The simulation, it turned out, was indistinguishable from the real-world data.

To make sure this was not a fluke, Wang’s team cut the data into different segments—looking only at scientists from a particular decade, for example, or in a particular discipline. Every time they ran the simulation, the same result held.

The timing of a big scientific hit, it seemed, was truly—and unexpectedly—random. For the newly minted Ph.D. and the long-tenured professor alike, this meant a big break could be just around the corner.

Model Behavior

The research also presented an opportunity to study more than just the greatest hits. Since they now understood that, across an individual career, impact was occurring randomly, the researchers could try to predict how citations would accumulate over an entire scientific career. Specifically, they wanted to understand why some scientists were more successful than others. Was success simply a matter of increased productivity—with more publications upping the chances for a breakaway hit? Or was some other factor at play?

From the initial analysis, Wang’s team created a single list that combined all of the citation counts received by every paper published by the scientists in his sample. That distribution contained lots of the low and medium citation counts that the average paper reached, as well as a few high numbers that the occasional hit paper had achieved.

To predict how a career would unfold, the team built a model that drew repeatedly from the distribution. “You just randomly pick a number every time someone publishes a paper,” explains Wang. By putting those random drawings together, they could approximate an individual’s entire career.

But this time when they first ran their model, the output did not quite match the real-world data. While the model predicted that a scientist’s average citation count increased as they produced more papers (and upped their odds of getting a hit), the real data showed that this increase was steeper than predicted. The model also failed to capture the fact that scientists whose hit papers had been particularly big hits tended to producer higher-impact papers all throughout their careers.

In other words, each scientist was indeed drawing randomly from a distribution—but they were not drawing from the same distribution.

This suggested there was some intrinsic quality that allowed certain scientists to produce more citable work than their peers. To account for that quality, the team added another parameter—which they called “Q”—to their model.

When they ran the model again, accounting for Q, its output matched the real-world data almost perfectly.

Making Sense of Q

A high Q score does not make someone a better researcher, necessarily. It just means they are more adept at turning a research topic into an attention-grabbing publication, Wang says. “A high-Q scientist can draw from the same knowledge pool as his peers, but multiply it into a much higher-citation paper.”

Furthermore, the Q parameter captures consistency over an entire career—so even a high-Q scientist will strike out occasionally, drawing a low number from the distribution of possible impacts. “But with time, as you draw more and more, as long as you have a high Q, most of the work you do will have high citations,” says Wang.

The more that Wang and coauthors looked into Q, the more important it appeared to be. Q scores predicted which scientists would win major prizes, including the Nobel, better than any other factor. And Q values calculated at various stages of a scientist’s career were found to be remarkably stable over time, meaning it was more than just a proxy for luck.

“If we know someone’s Q parameter earlier in the career, we’ll have a much better understanding of what will happen going forward,” Wang says.

The existence of Q raises some critical questions. Surely researchers will want to know if a scientist can cultivate a higher Q score—and if so, how. Wang has already begun research on this question.

He is also curious to see if his results hold beyond the realm of academia, and how they might help organizations or countries predict and nurture talent. “So many decisions are based on this ability to foresee a superstar,” he says.

Of course, Q’s predictability may have a dark side. For a low-Q scientist, even their biggest-hit paper would be doomed to a relatively low number of citations.

Wang, however, prefers a more optimistic interpretation of his results. (This is his hope project, after all.)

No matter how disappointing your past work, he says, the random order of impact means your brightest days may be ahead of you yet. “As long as you publish, you’re drawing from a distribution,” he says. “And that means there is hope.”

Featured Faculty

Professor of Management & Organizations; Professor of Industrial Engineering & Management Sciences (Courtesy), Director, Center for Science of Science and Innovation (CSSI)

About the Writer
Jake J. Smith is a freelance writer and radio producer in Chicago.
About the Research

Sinatra, Roberta, Dashun Wang, Pierre Deville, Chaoming Song, and Albert-László Barabási. 2016. “Quantifying the Evolution of Individual Scientific Impact ” Science. Vol. 354, Issue 6312.

Read the original

Most Popular This Week
  1. One Key to a Happy Marriage? A Joint Bank Account.
    Merging finances helps newlyweds align their financial goals and avoid scorekeeping.
    married couple standing at bank teller's window
  2. Take 5: Yikes! When Unintended Consequences Strike
    Good intentions don’t always mean good results. Here’s why humility, and a lot of monitoring, are so important when making big changes.
    People pass an e-cigarette billboard
  3. How Are Black–White Biracial People Perceived in Terms of Race?
    Understanding the answer—and why black and white Americans may percieve biracial people differently—is increasingly important in a multiracial society.
    How are biracial people perceived in terms of race
  4. Will AI Eventually Replace Doctors?
    Maybe not entirely. But the doctor–patient relationship is likely to change dramatically.
    doctors offices in small nodules
  5. Entrepreneurship Through Acquisition Is Still Entrepreneurship
    ETA is one of the fastest-growing paths to entrepreneurship. Here's how to think about it.
    An entrepreneur strides toward a business for sale.
  6. Take 5: Research-Backed Tips for Scheduling Your Day
    Kellogg faculty offer ideas for working smarter and not harder.
    A to-do list with easy and hard tasks
  7. How to Manage a Disengaged Employee—and Get Them Excited about Work Again
    Don’t give up on checked-out team members. Try these strategies instead.
    CEO cheering on team with pom-poms
  8. Which Form of Government Is Best?
    Democracies may not outlast dictatorships, but they adapt better.
    Is democracy the best form of government?
  9. What Went Wrong at AIG?
    Unpacking the insurance giant's collapse during the 2008 financial crisis.
    What went wrong during the AIG financial crisis?
  10. The Appeal of Handmade in an Era of Automation
    This excerpt from the book “The Power of Human" explains why we continue to equate human effort with value.
    person, robot, and elephant make still life drawing.
  11. 2 Factors Will Determine How Much AI Transforms Our Economy
    They’ll also dictate how workers stand to fare.
    robot waiter serves couple in restaurant
  12. When Do Open Borders Make Economic Sense?
    A new study provides a window into the logic behind various immigration policies.
    How immigration affects the economy depends on taxation and worker skills.
  13. Why Do Some People Succeed after Failing, While Others Continue to Flounder?
    A new study dispels some of the mystery behind success after failure.
    Scientists build a staircase from paper
  14. Sitting Near a High-Performer Can Make You Better at Your Job
    “Spillover” from certain coworkers can boost our productivity—or jeopardize our employment.
    The spillover effect in offices impacts workers in close physical proximity.
  15. How the Wormhole Decade (2000–2010) Changed the World
    Five implications no one can afford to ignore.
    The rise of the internet resulted in a global culture shift that changed the world.
  16. What’s at Stake in the Debt-Ceiling Standoff?
    Defaulting would be an unmitigated disaster, quickly felt by ordinary Americans.
    two groups of politicians negotiate while dangling upside down from the ceiling of a room
  17. What Happens to Worker Productivity after a Minimum Wage Increase?
    A pay raise boosts productivity for some—but the impact on the bottom line is more complicated.
    employees unload pallets from a truck using hand carts
  18. Immigrants to the U.S. Create More Jobs than They Take
    A new study finds that immigrants are far more likely to found companies—both large and small—than native-born Americans.
    Immigrant CEO welcomes new hires
  19. How Has Marketing Changed over the Past Half-Century?
    Phil Kotler’s groundbreaking textbook came out 55 years ago. Sixteen editions later, he and coauthor Alexander Chernev discuss how big data, social media, and purpose-driven branding are moving the field forward.
    people in 1967 and 2022 react to advertising
  20. 3 Traits of Successful Market-Creating Entrepreneurs
    Creating a market isn’t for the faint of heart. But a dose of humility can go a long way.
    man standing on hilltop overlooking city
More in Careers