Professional Forecasters
Skip to content
Podcast | Insight Unpacked Season 1: Extraordinary Brands and How to Build Them
Strategy Finance & Accounting Economics Policy Jul 1, 2008

Professional Forecasters

Innocent until proven strategic

Based on the research of

Marco Ottaviani

Peter Norman Sørensen

Imagine you are the chief operating officer for a Fortune 500 technology company and you have to sign off on a major pricing increase for your firm’s best-selling product line in two days. All the internal data you have—labor costs, product sales/growth trends, competitors’ and vendors’ anticipated pricing—support the price increase. But you are still hesitant. Then, perusing Business Week on the morning train, you come across an “Investment Outlook” article. Your eyes widen. It’s filled with predictions by professional economic forecasters like this one: “Better pricing trends will keep corporate profits better than expected but also greatly heighten inflation fears next year.” Now you’re relieved, confident that the price increase is the right course to take. After all, professional forecasters have no incentive to distort their predictions.

Or do they?

In their article “The Strategy of Professional Forecasting” (Journal of Financial Economics, 2006), Marco Ottaviani, a Kellogg faculty member in the Department of Management and Strategy, and his co-author Peter Sørensen consider that exact question. They investigate how forecasters’ professional incentives sometimes motivate departures from their clients’ best interests—namely, making the most truthful predictions they can.

Professional forecasters, typically highly compensated employees of financial companies or heads of their own independent forecasting firms, play a crucial role in shaping corporations’ and individuals’ decision-making: firms decide whether they should hire workers based on their prospects for future demand and choose their financing strategies using projected long-term interest rates; high-net-worth investors take expected economic trends (e.g., inflation, bond rates) into account to place big bets. In short, forecasters’ words—and numbers—have major influence on the decisions, and ultimately the fortunes, of many.

Guided Guesses
But how do these “profits prophets” form their expectations? By definition, professional forecasters must guess the future. Hence, one may think that they would maximize the accuracy of their reports by making the most truthful predictions they can. As previous research has argued, financial analysts’ projections should be truthful because their livelihood depends on their accuracy. And a glance at the significant dispersion among economic pundits’ predictions for major economic indexes year after year suggests that they are indeed using private information and personal expectations to make their guesses. It also reveals that they are rarely “right,” as can be shown by a simple plot of the GDP growth forecasts against the actual GDP growth rate (see Figure 1).

Figure 1: Real GDP growth rate forecasts versus actual rates

No one expects forecasters to be consistently on the money, but there is an implicit assumption that they are being truthful. As Ottaviani and Sørensen suggest, “Forecasters are presumed honest, unless proven strategic.” And that is where it gets tricky, largely because professional forecasters are paid, and accorded fame, based on their reputation and not necessarily the actual accuracy of their predictions. That is, the more they are perceived as having superior future-gazing skills or knowledge about the economy, the more money—and fame—they get. As such, rather than telling people what they really know, forecasters may be tempted to manipulate their predictions strategically to enhance their reputations and accompanying cash and celebrity.

No one expects forecasters to be consistently on the money, but there is an implicit assumption that they are being truthful.Specifically, Ottaviani and Sørensen argue that some forecasters may have incentive to shift their forecasts more toward the established consensus on specific indicators to avoid unfavorable publicity when wrong, while others might exaggerate their true predictions with the hope of standing out from the forecaster crowd in certain contexts. The researchers analyze the forces that drive these strategic incentives by developing two theories, the reputational cheap talk theory and the forecasting contest theory, and they consider empirical evidence for each.

Reputational Cheap Talk Theory
The reputational cheap talk theory posits that forecasters aim to appear well informed. A natural question, then, is why forecasters would not fully disclose what they know or believe; after all, by making the right predictions forecasters stand only to improve their reputations. To answer this question, first note that everyone, market participants and forecasters alike, shares knowledge of some public information, whether CNN headlines, Financial Times articles, or others. This common information creates baseline expectations regarding several economic variables. More importantly, these baseline expectations usually point in the right direction. But professional forecasters should be able to improve upon common knowledge because they have access to more precise information about the economy’s state, allowing them to combine what everybody knows (public information) with what they alone know (private information) to generate their personal predictions. As such, forecasters’ personal predictions typically fall between public and private beliefs—deviating from public expectations based on their private information, but not as exaggerated as their private information might be because they take public information into account. If forecasters were not strategic, they would honestly report their personal predictions. Market participants would then be right to take these forecasts at face value.

However, if the market believes that forecasters are honest and rewards them based on their reputation for accuracy, will the forecasters be content to honestly report their personal predictions? Taking into account all the information they have, forecasters expect their personal predictions to be correct. To convince the market that their private information is accurate, however, they would like the market to believe that their private information is located at their personal prediction. In other words, if forecasters can convince the market that their predictions are based fully on private information, they would be considered even better informed than they really are. Consequently, forecasters have strong incentive to confirm original market beliefs by making predictions closer to the market consensus than what they truly believe. If so, the market’s original belief that forecasters report honestly their personal predictions is not consistent with the actual behavior of the forecasters.

If the market is fully rational, it will be able to anticipate that forecasters are distorting their predictions to pretend to be more informed than they really are. As a consequence, the market can only trust forecasters to communicate part of the information they have. As Ottaviani and Sørensen point out, “Paradoxically, the desire of analysts to be perceived as good forecasters turns them into poor forecasters.” In line with this, the authors also note a report in The Economist on the “surprisingly good performance of a sample of London garbage men in forecasting key economic variables.” Presumably the garbage men were free of reputation-focused incentives.

Forecasting Contest Theory
In contrast, the forecasting contest theory makes the completely opposite prediction: that forecasters have an incentive to distance themselves from market consensus. Indeed, if forecasters predict extreme events and happen to be right, their reputation will skyrocket; if they merely repeat what everybody else is already saying, they stand to gain little, even when they are right. As the theory’s name implies, this behavior results largely from high-profile public forecaster competitions such as the Wall Street Journal’s “Forecasting Survey” (macroeconomics) and “All-Star Analysts” (earnings), which feature write-ups for winning forecasters. Other such rankings and contests appear online (e.g.,,, and some include monetary prizes. Without a doubt, forecasters stand to gain much-enhanced reputations by winning or placing in such contests. As Ottaviani and Sørensen note, “it is easier for people to keep in mind who is an ‘all-star’ analyst, or who came in first in a contest, than specific details about forecast accuracy.”

Indeed, forecasting contests, rather than focusing on each forecaster’s prediction and its eventual distance from the actual economic indicator in question, tend to report only the relative accuracy of different forecasters, usually a ranking of forecasters by level of accuracy. In many cases the report will not even include forecasters who did not place. In this context, forecasters have incentive to differentiate themselves from competitors by putting greater weight on their private information, potentially enjoying major reputation gains when they guess right. Therefore, their contest-related predictions tend to be exaggerated toward those suggested by their private information (i.e., including little if any public information). In support of this, Ottaviani and Sørensen point to empirical evidence that financial analysts releasing late earnings forecasts “tend to overshoot the consensus forecast in the direction of their private information.”

In sum, the reputational cheap talk theory should be more relevant if forecasters focus on their absolute reputations—that is, how accurate their predictions are compared to actual economic indicators. Here forecasters would be expected to align their predictions more closely with publicly available information. In contrast, if forecasters attend more fully to their relative reputations, as if they were competing in contests that generate rankings, they will behave in line with forecasting contest theory and tend to exaggerate predictions in the direction of their private information. So which of these theories better explains the actual picture in professional forecasting? Although certainly not definitive, recent studies show a strong tendency toward exaggerated forecasts, in line with the forecasting contest theory.

Rather than prescribing how forecasters should make their predictions, Ottaviani and Sørensen provide a framework that helps us interpret forecasters’ predictions, urging us to recognize that these professionals have specific incentives to depart from their private guesses in their public predictions. Armed with these insights, perhaps we as the public may be able to generate more accurate private guesses of our own.

About the Writer
Renato Gomes, doctoral student in the Department of Economics Department, Weinberg College of Arts and Sciences, Northwestern University, andSachin Waikar, freelance business writer, Evanston, IL.
About the Research

Marco Ottaviani and Peter Norman Sørensen (2006), “The Strategy of Professional Forecasting,” Journal of Financial Economics, August 2006, 81(2), 441–466

Read the original

Most Popular This Week
  1. What Went Wrong with FTX—and What’s Next for Crypto?
    One key issue will be introducing regulation without strangling innovation, a fintech expert explains.
    stock trader surrounded by computer monitors
  2. How Experts Make Complex Decisions
    By studying 200 million chess moves, researchers shed light on what gives players an advantage—and what trips them up.
    two people playing chess
  3. What Donors Need to Hear to Open the Checkbook
    Insights from marketing on how charities can grow by appealing to different kinds of donors.
  4. The Complicated Logic Behind Donating to a Food Pantry Rather than Giving a Hungry Person Cash
    If we were in need, we’d likely want money. So what accounts for that difference?
    Donating food is paternalistic aid
  5. To Improve Fundraising, Give Donors a Local Connection
    Research offers concrete strategies for appealing to donors who want to make an impact.
    Charity appeals that frame the message around local connection tend to be more successful as a result of the proximity effect
  6. Which Form of Government Is Best?
    Democracies may not outlast dictatorships, but they adapt better.
    Is democracy the best form of government?
  7. How You Can Make a More Positive Social Impact
    A 3-step guide to becoming a more thoughtful consumer and donor.
    person with money deciding which box to put it in.
  8. Podcast: What the FTX Meltdown Means for the Future of Crypto
    The implosion of the crypto exchange has sent the industry reeling. We dig into what happened and whether cryptocurrency, as a concept, can weather the storm.
  9. What Went Wrong at AIG?
    Unpacking the insurance giant's collapse during the 2008 financial crisis.
    What went wrong during the AIG financial crisis?
  10. How Much Do Campaign Ads Matter?
    Tone is key, according to new research, which found that a change in TV ad strategy could have altered the results of the 2000 presidential election.
    Political advertisements on television next to polling place
  11. What’s the Secret to Successful Innovation?
    Hint: it’s not the product itself.
    standing woman speaking with man seated on stool
  12. Immigrants to the U.S. Create More Jobs than They Take
    A new study finds that immigrants are far more likely to found companies—both large and small—than native-born Americans.
    Immigrant CEO welcomes new hires
  13. How Are Black–White Biracial People Perceived in Terms of Race?
    Understanding the answer—and why black and white Americans may percieve biracial people differently—is increasingly important in a multiracial society.
    How are biracial people perceived in terms of race
  14. Why Well-Meaning NGOs Sometimes Do More Harm than Good
    Studies of aid groups in Ghana and Uganda show why it’s so important to coordinate with local governments and institutions.
    To succeed, foreign aid and health programs need buy-in and coordination with local partners.
  15. How Has Marketing Changed over the Past Half-Century?
    Phil Kotler’s groundbreaking textbook came out 55 years ago. Sixteen editions later, he and coauthor Alexander Chernev discuss how big data, social media, and purpose-driven branding are moving the field forward.
    people in 1967 and 2022 react to advertising
  16. Why Are So Many Politicians Embracing Conspiracy Theories?
    Conspiratorial thinking has always been attractive in times of uncertainty—but it’s become more mainstream. An expert explains why, and whether anything can be done.
    Voting machine in a spider web
  17. What the New Climate Bill Means for the U.S.—and the World
    The Inflation Reduction Act won’t reverse inflation or halt climate change, but it's still a big deal.
    energy bill with solar panels wind turbines and pipelines
More in Strategy